
Lecture 2: Learning from 
Evaluative Feedback

or
!Bandit Problems"

1

Edward L. Thorndike
#1874$1949%

Puzzle Box
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Learning by Trial$and$Error

Law of E&ect:

!Of several responses to the same situation, those 
which are accompanied or closely followed by 
satisfaction to the animal will, other things being 
equal, be more 'rmly connected with the situation, so 
that, when it recurs, they will be more likely to recur; 
those which are accompanied or closely followed by 
discomfort to the animal will, other things being equal, 
have their connections with that situation weakened, 
so that when it recurs, they will be less likely to recur." 

Thorndike, 1911

3

4

Some Distinctions
• Evaluating actions vs. instructing by giving correct actions

• Pure evaluative feedback depends totally on the action taken. 
Pure instructive feedback depends not at all on the action 
taken. 

• Supervised learning is instructive; optimization is evaluative

• Associative vs. Non-associative:

• Associative: inputs mapped to outputs; learn the best 
output for each input

• Non$associative: !learn" #'nd% one best output

• n$armed bandit #at least how we treat it% is:

• Non$associative

• Evaluative feedback
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The n$Armed Bandit Problem

• Choose repeatedly from one of n actions; each choice is 
called a play

• After each play      , you get a reward     , where

• Objective is to Maximize the reward in the long term, e.g., 
over 1000 plays
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To solve the n$armed bandit problem,
    you must explore a variety of actions
    and the exploit the best of them
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The Exploration/Exploitation Dilemma

• Suppose you form estimates

• The greedy action at t is:

• You can(t exploit all the time; you can(t explore all the time

• You can never stop exploring; but you should always 
reduce exploring
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Action$Value Methods

• Methods that adapt action$value estimates and nothing 
else, e.g.:  suppose by the t$th play, action     had been 
chosen      times, producing rewards                       then
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!$Greedy Action Selection

• Greedy action selection:

• !$Greedy:
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. . . the simplest way to try to balance exploration and exploitation
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10$Armed Testbed
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• n = 10 possible actions

• Each          is chosen randomly from a normal distribution:

• each      is also normal:

• 1000 plays

• repeat the whole thing 2000 times and average the results
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!$Greedy Methods on the 10 $Armed Testbed
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Softmax Action Selection

• Softmax action selection methods grade action 
probs. by estimated values.

• The most common softmax uses a Gibbs, or 
Boltzmann, distribution:

Choose action a on play t with probability
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!computational temperature"
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Binary Bandit Tasks
a
t
= 1    or    a

t
= 2

rt =  success    or    rt =  failure

Suppose you have just two actions:

and just two rewards: 

Then you might infer a target or desired action: 

at                          if  success

the other action    if  failure
)d

t
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and then  always play the action that was most often the target 

Call this the supervised algorithm

It works 'ne on deterministic tasks… 
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Contingency Space

 The space of all possible binary bandit tasks:
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Linear !Learning Automata"

Let !
t
(a) = Pr a

t
= a{ } be the only adapted parameter

LR –I  (Linear,  reward - inaction)

        On success :  ! t+1(at ) = !t (at) +" (1 #! t(at )) 0 <" < 1

                 (the other action probs. are adjusted to still sum to 1)

        On failure :   no change

LR -P (Linear,  reward - penalty)

        On success :  ! t+1(at ) = !t (at) +" (1 #! t(at )) 0 <" < 1

                 (the other action probs. are adjusted to still sum to 1)

        On failure :   ! t+1(at ) = ! t(at) +" (0 #! t(at )) 0 < " < 1

For two actions, a stochastic, incremental version of the supervised algorithm
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Performance on Binary Bandit Tasks A and B
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Incremental Implementation
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Recall the sample average estimation method:

Can we do this incrementally #without storing all the rewards%? 

We could keep a running sum and count, or, equivalently:

Qk+1 = Qk +
1

k +1
rk+1 !Qk[ ]

The average of the 'rst k  rewards is
#dropping the dependence on     %:

 This is a common form for update rules:

NewEstimate = OldEstimate + StepSize*Target – OldEstimate+

a
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Tracking a Non$stationary Problem

Choosing       to be a sample average is appropriate in a 
stationary problem, 

           i.e., when none of the            change over time,

But not in a non$stationary problem.
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exponential, recency-weighted average
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Optimistic Initial Values

• All methods so far depend on          , i.e., they are biased.

• Suppose instead we initialize the action values 
optimistically,
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i.e., on the 10$armed testbed, use Q0 (a) = 5   for all a
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Reinforcement Comparison

• Compare rewards to a reference reward,      , e.g., an 
average of observed rewards

• Strengthen or weaken the action taken depending on

• Let           denote the preference for action

• Preferences determine action probabilities, e.g., by 
Gibbs distribution: 

• Then:    
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Performance of a Reinforcement 
Comparison Method
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Pursuit Methods

• Maintain both action$value estimates and action preferences

• Always !pursue" the greedy action, i.e., make the greedy 
action more likely to be selected

• After the t$th play, update the action values to get

• The new greedy action is 

• Then:
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and the probs. of the other actions decremented  to 
maintain the sum of 1
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Performance of a Pursuit Method
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Associative Search

Imagine switching bandits at each play

actions 

Bandit 3 
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Conclusions

• These are all very simple methods

• but they are complicated enough,we will build on 
them

• Ideas for improvements:

• estimating uncertainties . . . interval estimation

• approximating Bayes optimal solutions 

• Gittens indices

• The full RL problem o&ers some ideas for solution . . .

24



Next Class

• Read Chapter 3
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