
Lecture 2: Learning from
Evaluative Feedback

or
!Bandit Problems"

1

Edward L. Thorndike
#1874$1949%

Puzzle Box

2

Learning by TrialandError

Law of E&ect:

!Of several responses to the same situation, those
which are accompanied or closely followed by
satisfaction to the animal will, other things being
equal, be more 'rmly connected with the situation, so
that, when it recurs, they will be more likely to recur;
those which are accompanied or closely followed by
discomfort to the animal will, other things being equal,
have their connections with that situation weakened,
so that when it recurs, they will be less likely to recur."

Thorndike, 1911

3

4

Some Distinctions
• Evaluating actions vs. instructing by giving correct actions

• Pure evaluative feedback depends totally on the action taken.
Pure instructive feedback depends not at all on the action
taken.

• Supervised learning is instructive; optimization is evaluative

• Associative vs. Non-associative:

• Associative: inputs mapped to outputs; learn the best
output for each input

• Non$associative: !learn" #'nd% one best output

• n$armed bandit #at least how we treat it% is:

• Non$associative

• Evaluative feedback

4

5

The n$Armed Bandit Problem

• Choose repeatedly from one of n actions; each choice is
called a play

• After each play , you get a reward , where

• Objective is to Maximize the reward in the long term, e.g.,
over 1000 plays

E r
t
| a

t
=Q

*
(a

t
)

a
t

r
t

These are unknown action values

Distribution of depends only on r
t

a
t

To solve the n$armed bandit problem,
 you must explore a variety of actions
 and the exploit the best of them

5

6

The Exploration/Exploitation Dilemma

• Suppose you form estimates

• The greedy action at t is:

• You can(t exploit all the time; you can(t explore all the time

• You can never stop exploring; but you should always
reduce exploring

Q
t
(a) !Q

*
(a) action value estimates

a
t

* = argmax
a
Q
t
(a)

a
t
= a

t

*
! exploitation

a
t
" a

t

* ! exploration

6

7

Action$Value Methods

• Methods that adapt action$value estimates and nothing
else, e.g.: suppose by the t$th play, action had been
chosen times, producing rewards then

•

Qt(a) =
r
1
+ r

2
+Lrka

ka

k
a

r
1
, r
2
,K, r

ka
,

!sample average"

lim
k a!"

Qt(a) =Q
*
(a)

a

7

8

!$Greedy Action Selection

• Greedy action selection:

• !$Greedy:

a
t
= a

t

*
= argmax

a
Q
t
(a)

a
t

* with probability 1 ! "

random action with probability ")a
t
=

. . . the simplest way to try to balance exploration and exploitation

8

9

10$Armed Testbed

!(Q
*
(a

t
),1)

!(0,1)

r
t

Q
*
(a)

• n = 10 possible actions

• Each is chosen randomly from a normal distribution:

• each is also normal:

• 1000 plays

• repeat the whole thing 2000 times and average the results

9

10

!$Greedy Methods on the 10 $Armed Testbed

10

11

Softmax Action Selection

• Softmax action selection methods grade action
probs. by estimated values.

• The most common softmax uses a Gibbs, or
Boltzmann, distribution:

Choose action a on play t with probability

e
Qt (a) !

eQt (b) !

b=1

n

"
,

where ! is the

!computational temperature"

11

12

Binary Bandit Tasks
a
t
= 1 or a

t
= 2

rt = success or rt = failure

Suppose you have just two actions:

and just two rewards:

Then you might infer a target or desired action:

at if success

the other action if failure
)d

t
=

and then always play the action that was most often the target

Call this the supervised algorithm

It works 'ne on deterministic tasks…

12

13

Contingency Space

 The space of all possible binary bandit tasks:

13

14

Linear !Learning Automata"

Let !
t
(a) = Pr a

t
= a{ } be the only adapted parameter

LR –I (Linear, reward - inaction)

 On success : ! t+1(at) = !t (at) +" (1 #! t(at)) 0 <" < 1

 (the other action probs. are adjusted to still sum to 1)

 On failure : no change

LR -P (Linear, reward - penalty)

 On success : ! t+1(at) = !t (at) +" (1 #! t(at)) 0 <" < 1

 (the other action probs. are adjusted to still sum to 1)

 On failure : ! t+1(at) = ! t(at) +" (0 #! t(at)) 0 < " < 1

For two actions, a stochastic, incremental version of the supervised algorithm

14

15

Performance on Binary Bandit Tasks A and B

15

16

Incremental Implementation

Qk =
r
1
+ r

2
+Lrk

k

Recall the sample average estimation method:

Can we do this incrementally #without storing all the rewards%?

We could keep a running sum and count, or, equivalently:

Qk+1 = Qk +
1

k +1
rk+1 !Qk[]

The average of the 'rst k rewards is
#dropping the dependence on %:

 This is a common form for update rules:

NewEstimate = OldEstimate + StepSize*Target – OldEstimate+

a

16

17

Tracking a Non$stationary Problem

Choosing to be a sample average is appropriate in a
stationary problem,

 i.e., when none of the change over time,

But not in a non$stationary problem.

Qk

Q
*
(a)

Better in the non$stationary case is:

Qk+1 = Qk +! rk+1 "Qk[]
for constant !, 0 < ! # 1

 = (1" !)
k
Q0 + ! (1 "!

i=1

k

$)
k "i
ri

exponential, recency-weighted average

17

18

Optimistic Initial Values

• All methods so far depend on , i.e., they are biased.

• Suppose instead we initialize the action values
optimistically,

Q
0
(a)

i.e., on the 10$armed testbed, use Q0 (a) = 5 for all a

18

19

Reinforcement Comparison

• Compare rewards to a reference reward, , e.g., an
average of observed rewards

• Strengthen or weaken the action taken depending on

• Let denote the preference for action

• Preferences determine action probabilities, e.g., by
Gibbs distribution:

• Then:

r
t

r
t
! r

t

pt(a) a

!
t
(a) = Pr at = a{ } =

e
pt (a)

e pt (b)
b=1

n

"

pt+1(at) = pt(a) + rt ! r t[] and r t+1 = r t + " rt ! r t[]

19

20

Performance of a Reinforcement
Comparison Method

20

21

Pursuit Methods

• Maintain both action$value estimates and action preferences

• Always !pursue" the greedy action, i.e., make the greedy
action more likely to be selected

• After the t$th play, update the action values to get

• The new greedy action is

• Then:

a
t+1

*
= argmax

a
Q
t+1(a)

!
t+1(at+1

*
) = !

t
(a

t+1

*
) + " 1 #!

t
(a

t+1

*
)[]

Q
t+1

and the probs. of the other actions decremented to
maintain the sum of 1

21

22

Performance of a Pursuit Method

22

23

Associative Search

Imagine switching bandits at each play

actions

Bandit 3

23

24

Conclusions

• These are all very simple methods

• but they are complicated enough,we will build on
them

• Ideas for improvements:

• estimating uncertainties . . . interval estimation

• approximating Bayes optimal solutions

• Gittens indices

• The full RL problem o&ers some ideas for solution . . .

24

Next Class

• Read Chapter 3

25

